Symplectic involutions of K3[n]$K3^{[n]}$ type and Kummer n$n$ type manifolds
نویسندگان
چکیده
In this paper, we describe the fixed locus of a symplectic involution on hyper-Kähler manifold type K 3 [ n ] $K3^{[n]}$ or Kummer $n$ type. We prove that consists finitely many copies deformations Hilbert schemes $K3$ surfaces lower dimensions and isolated points.
منابع مشابه
the investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Numerically Trivial Involutions of Kummer Type of an Enriques Surface
There are two types of numerically trivial involutions of an Enriques surface according as their period lattice. One is U(2) ⊥ U(2)-type and the other is U ⊥ U(2)-type. An Enriques surface with an involution of U(2) ⊥ U(2)-type is doubly covered by a Kummer surface of product type, and such involutions are classified again into two types according as the parity of the corresponding Göpel subgro...
متن کاملHomogeneous symplectic manifolds with Ricci - type curvature
We consider invariant symplectic connections ∇ on homogeneous symplectic manifolds (M, ω) with curvature of Ricci type. Such connections are solutions of a variational problem studied by Bourgeois and Cahen, and provide an integrable almost complex structure on the bundle of almost complex structures compatible with the symplectic structure. If M is compact with finite fundamental group then (M...
متن کاملDiscriminant of Symplectic Involutions
We define an invariant of torsors under adjoint linear algebraic groups of type Cn—equivalently, central simple algebras of degree 2n with symplectic involution—for n divisible by 4 that takes values in H(k, μ2). The invariant is distinct from the few known examples of cohomological invariants of torsors under adjoint groups. We also prove that the invariant detects whether a central simple alg...
متن کاملDelzant-type classification of near-symplectic toric 4-manifolds
Delzant’s theorem for symplectic toric manifolds says that there is a one-to-one correspondence between certain convex polytopes in Rn and symplectic toric 2n-manifolds, realized by the image of the moment map. I review proofs of this theorem and the convexity theorem of Atiyah-Guillemin-Sternberg on which it relies. Then, I describe Honda’s results on the local structure of near-symplectic 4-m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of The London Mathematical Society
سال: 2022
ISSN: ['1469-2120', '0024-6093']
DOI: https://doi.org/10.1112/blms.12594